Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.453
1.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article En | MEDLINE | ID: mdl-38721854

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
2.
BMC Mol Cell Biol ; 25(1): 15, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741034

BACKGROUND: Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS: In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS: Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION: TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.


Electroporation , Genetic Vectors , Transfection , Animals , Chlorocebus aethiops , Vero Cells , Electroporation/methods , Transfection/methods , Genetic Vectors/genetics , Lentivirus/genetics , Transduction, Genetic/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans
3.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38668730

BACKGROUND: We previously demonstrated the successful use of in vivo CRISPR gene editing to delete 4-hydroxyphenylpyruvate dioxygenase (HPD) to rescue mice deficient in fumarylacetoacetate hydrolase (FAH), a disorder known as hereditary tyrosinemia type 1 (HT1). The aim of this study was to develop an ex vivo gene-editing protocol and apply it as a cell therapy for HT1. METHODS: We isolated hepatocytes from wild-type (C57BL/6J) and Fah-/- mice and then used an optimized electroporation protocol to deliver Hpd-targeting CRISPR-Cas9 ribonucleoproteins into hepatocytes. Next, hepatocytes were transiently incubated in cytokine recovery media formulated to block apoptosis, followed by splenic injection into recipient Fah-/- mice. RESULTS: We observed robust engraftment and expansion of transplanted gene-edited hepatocytes from wild-type donors in the livers of recipient mice when transient incubation with our cytokine recovery media was used after electroporation and negligible engraftment without the media (mean: 46.8% and 0.83%, respectively; p=0.0025). Thus, the cytokine recovery medium was critical to our electroporation protocol. When hepatocytes from Fah-/- mice were used as donors for transplantation, we observed 35% and 28% engraftment for Hpd-Cas9 ribonucleoproteins and Cas9 mRNA, respectively. Tyrosine, phenylalanine, and biochemical markers of liver injury normalized in both Hpd-targeting Cas9 ribonucleoprotein and mRNA groups independent of induced inhibition of Hpd through nitisinone, indicating correction of disease indicators in Fah-/- mice. CONCLUSIONS: The successful liver cell therapy for HT1 validates our protocol and, despite the known growth advantage of HT1, showcases ex vivo gene editing using electroporation in combination with liver cell therapy to cure a disease model. These advancements underscore the potential impacts of electroporation combined with transplantation as a cell therapy.


Gene Editing , Hepatocytes , Hydrolases , Mice, Inbred C57BL , Tyrosinemias , Animals , Tyrosinemias/therapy , Tyrosinemias/genetics , Gene Editing/methods , Mice , Hepatocytes/transplantation , Hepatocytes/metabolism , Hydrolases/genetics , Cell- and Tissue-Based Therapy/methods , CRISPR-Cas Systems , Electroporation/methods , Mice, Knockout , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Disease Models, Animal , Cyclohexanones , Nitrobenzoates
4.
Biotechnol J ; 19(4): e2300475, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651262

The application of pulsed electric fields (PEFs) is becoming a promising tool for application in biotechnology, and the food industry. However, real-time monitoring of the efficiency of PEF treatment conditions is challenging, especially at the industrial scale and in continuous production conditions.  To overcome this challenge, we have developed a straightforward setup capable of real-time detection of yeast biological autoluminescence (BAL) during pulsing. Saccharomyces cerevisiae culture was exposed to 8 pulses of 100 µs width with electric field strength magnitude 2-7 kV cm-1. To assess the sensitivity of our method in detecting yeast electroporation, we conducted a comparison with established methods including impedance measurements, propidium iodide uptake, cell growth assay, and fluorescence microscopy. Our results demonstrate that yeast electroporation can be instantaneously monitored during pulsing, making it highly suitable for industrial applications. Furthermore, the simplicity of our setup facilitates its integration into continuous liquid flow systems. Additionally, we have established quantitative indicators based on a thorough statistical analysis of the data that can be implemented through a dedicated machine interface, providing efficiency indicators for analysis.


Electroporation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/growth & development , Electroporation/methods
5.
J Vis Exp ; (205)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38557598

Genome editing technology is widely used to produce genetically modified animals, including rats. Cytoplasmic or pronuclear injection of DNA repair templates and CRISPR-Cas reagents is the most common delivery method into embryos. However, this type of micromanipulation necessitates access to specialized equipment, is laborious, and requires a certain level of technical skill. Moreover, microinjection techniques often result in lower embryo survival due to the mechanical stress on the embryo. In this protocol, we developed an optimized method to deliver large DNA repair templates to work in conjunction with CRISPR-Cas9 genome editing without the need for microinjection. This protocol combines AAV-mediated DNA delivery of single-stranded DNA donor templates along with the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) by electroporation to modify 2-cell embryos. Using this novel strategy, we have successfully produced targeted knock-in rat models carrying insertion of DNA sequences from 1.2 to 3.0 kb in size with efficiencies between 42% and 90%.


CRISPR-Cas Systems , Gene Editing , Rats , Animals , Gene Editing/methods , Dependovirus/genetics , Electroporation/methods , Zygote
6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673901

Irreversible electroporation (IRE) is a prominent non-thermal ablation method widely employed in clinical settings for the focal ablation therapy of solid tumors. Utilizing high-voltage, short-duration electric pulses, IRE induces perforation defects in the cell membrane, leading to apoptotic cell death. Despite the promise of irreversible electroporation (IRE) in clinical applications, it faces challenges concerning the coverage of target tissues for ablation, particularly when compared to other thermal ablation therapies such as radiofrequency ablation, microwave ablation, and cryoablation. This study aims to investigate the induced hyperthermal effect of IRE by applying a polydopamine nanoparticle (Dopa NP) coating on the electrode. We hypothesize that the induced hyperthermal effect enhances the therapeutic efficacy of IRE for cancer ablation. First, we observed the hyperthermal effect of IRE using Dopa NP-coated electrodes in hydrogel phantom models and then moved to in vivo models. In particular, in in vivo animal studies, the IRE treatment of rabbit hepatic lobes with Dopa NP-coated electrodes exhibited a two-fold higher increase in temperature (ΔT) compared to non-coated electrodes. Through a comprehensive analysis, we found that IRE treatment with Dopa NP-coated electrodes displayed the typical histological signatures of hyperthermal ablation, including the disruption of the hepatic cord and lobular structure, as well as the infiltration of erythrocytes. These findings unequivocally highlight the combined efficacy of IRE with Dopa NPs for electroporation and the hyperthermal ablation of target cancer tissues.


Electrodes , Electroporation , Indoles , Nanoparticles , Polymers , Indoles/chemistry , Indoles/pharmacology , Animals , Polymers/chemistry , Nanoparticles/chemistry , Electroporation/methods , Rabbits , Liver/surgery , Liver/drug effects , Hyperthermia, Induced/methods
7.
Sci Rep ; 14(1): 7962, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575628

The underlying study was carried out aiming at transdermal drug delivery (TDD) of Goniothalamus macrophyllus as sono-photo-sensitizer (SPS) using microneedle (MN) arrays with iontophoresis (MN-IP), electroporation (MN-EP) in conjunction with applying photodynamic therapy (PDT), sonodynamic therapy (SDT) and sono-photodynamic therapy (SPDT) as an up-to-date activated cancer treatment modality. Study was conducted on 120 male Swiss Albino mice, inoculated with Ehrlich ascites carcinoma (EAC) divided into 9 groups. We employed three different arrays of MN electrodes were used (parallel, triangular, and circular), EP, IP with different volts (6, 9, 12 V), an infrared laser and an ultrasound (pulsed and continuous wave) as our two energy sources. Results revealed that parallel 6 V TDD@MN@IP@EP can be used as effective delivery system for G. macrophyllus from skin directly to target EAC cells. In addition MN@IP@EP@TDD G. macrophyllus is a potential SPS for SPDT treatment of EAC. With respect to normal control mice and as opposed to the EAC untreated control mice, MN@EP@IP TDD G. macrophyllus in the laser, ultrasound, and combination activated groups showed a significant increase in the antioxidant markers TAC level and the GST, GR, Catalase, and SOD activities, while decrease in lipid peroxidation oxidative stress parameter MDA levels. In addition significantly increased apoptotic genes expressions (p53, caspase (3, 9), Bax, and TNF alpha) and on the other hand decreased anti- apoptotic (Bcl-2) and angiogenic (VEGF) genes expressions. Moreover significantly ameliorate liver and kidney function decreasing ALT, AST, urea and creatinine respectively. Furthermore MN@IP@EP@TDD G. macrophyllus combined with SPDT was very effective at reducing the growth of tumors and even causing cell death according to microscopic H&E stain results. This process may be related to a sono- and/or photochemical activation mechanism. According to the findings, MN@IP@EP@TDD G. macrophyllus has a lot of potential as a novel, efficient delivery method that in combination with infrared laser and ultrasound activation SPDT demonstrated promising anticancer impact for treating cancer.


Carcinoma , Goniothalamus , Male , Animals , Mice , Iontophoresis , Administration, Cutaneous , Skin/metabolism , Electroporation/methods , Carcinoma/metabolism
9.
Sci Rep ; 14(1): 9902, 2024 04 30.
Article En | MEDLINE | ID: mdl-38688960

Irreversible electroporation (IRE) is a non-thermal ablation technique for local tumor treatment known to be influenced by pulse duration and voltage settings, affecting its efficacy. This study aims to investigate the effects of bipolar IRE with different pulse durations in a prostate cancer mouse model. The therapeutic effectiveness was assessed with in vitro cell experiments, in vivo tumor volume changes with magnetic resonance imaging, and gross and histological analysis in a mouse model. The tumor volume continuously decreased over time in all IRE-treated groups. The tumor volume changes, necroptosis (%), necrosis (%), the degree of TUNEL-positive cell expression, and ROS1-positive cell (%) in the long pulse duration-treated groups (300 µs) were significantly increased compared to the short pulse duration-treated groups (100 µs) (all p < 0.001). The bipolar IRE with a relatively long pulse duration at the same voltage significantly increased IRE-induced cell death in a prostate cancer mouse model.


Disease Models, Animal , Electroporation , Prostatic Neoplasms , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Mice , Electroporation/methods , Cell Line, Tumor , Humans , Magnetic Resonance Imaging , Tumor Burden , Apoptosis
10.
J Vis Exp ; (205)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38526071

During the development of the cerebral cortex, neurons and glial cells originate in the ventricular zone lining the ventricle and migrate toward the brain surface. This process is crucial for proper brain function, and its dysregulation can result in neurodevelopmental and psychiatric disorders after birth. In fact, many genes responsible for these diseases have been found to be involved in this process, and therefore, revealing how these mutations affect cellular dynamics is important for understanding the pathogenesis of these diseases. This protocol introduces a technique for time-lapse imaging of migrating neurons and glial progenitors in brain slices obtained from mouse embryos. Cells are labeled with fluorescent proteins using in utero electroporation, which visualizes individual cells migrating from the ventricular zone with a high signal-to-noise ratio. Moreover, this in vivo gene transfer system enables us to easily perform gain-of-function or loss-of-function experiments on the given genes by co-electroporation of their expression or knockdown/knockout vectors. Using this protocol, the migratory behavior and migration speed of individual cells, information that is never obtained from fixed brains, can be analyzed.


Neuroglia , Neurons , Humans , Animals , Mice , Time-Lapse Imaging/methods , Cell Movement/physiology , Neurons/physiology , Brain , Cerebral Cortex , Electroporation/methods
11.
BMC Biotechnol ; 24(1): 16, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532411

BACKGROUND: Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various methods have been utilized, electroporation remains the preferred technique for transient gene over-expression. However, the efficiency of electroporation is reduced for human and mouse primary CTLs. Lonza offers kits that effectively improve plasmid DNA transfection quality. Unfortunately, the removal of key components of the cell recovery medium considerably reduced the efficiency of their kit for CTLs. Our aim was to develop a new recovery medium to be used with Lonza's Nucleofector system that would significantly enhance transfection rates. RESULTS: We assessed the impact of different media in which the primary CTLs were placed to recover after electroporation on cell survival, transfection rate and their ability to form an immunological synapse and to perform exocytosis. We transfected the cells with pmax-GFP and large constructs encoding for either CD81-super ecliptic pHluorin or granzyme B-pHuji. The comparison of five different media for mouse and two for human CTLs demonstrated that our new recovery medium composed of Opti-MEM-GlutaMAX supplemented with HEPES, DMSO and sodium pyruvate gave the best result in cell survival (> 50%) and transfection rate (> 30 and 20% for mouse and human cells, respectively). More importantly, the functionality of CTLs was at least twice as high as with the original Lonza recovery medium. In addition, our RM significantly improved transfection efficacy of natural killer cells that are notoriously hard to electroporate. CONCLUSION: Our results show that successful transfection depends not only on the electroporation medium and pulse sequence but also on the medium applied for cell recovery. In addition, we have reduced our reliance on proprietary products by designing an effective recovery medium for both mouse and human primary CTLs and other lymphocytes that can be easily implemented by any laboratory. We expect that this recovery medium will have a significant impact on both fundamental and applied research in immunology.


Electroporation , T-Lymphocytes, Cytotoxic , Humans , Mice , Animals , Electroporation/methods , Transfection , Plasmids , DNA/genetics
12.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38542122

Gene electrotransfer (GET) of plasmids encoding interleukin 12 (IL-12) has already been used for the treatment of various types of tumors in human oncology and as an adjuvant in DNA vaccines. In recent years, we have developed a plasmid encoding human IL-12 (phIL12) that is currently in a phase I clinical study. The aim was to confirm the results of a non-clinical study in mice on pharmacokinetic characteristics and safety in a porcine model that better resembled human skin. The GET of phIL12 in the skin was performed on nine pigs using different concentrations of plasmid phIL12 and invasive (needle) or noninvasive (plate) types of electrodes. The results of our study demonstrate that the GET of phIL-12 with needle electrodes induced the highest expression of IL-12 at the protein level on day 7 after the procedure. The plasmid was distributed to all tested organs; however, its amount decreased over time and was at a minimum 28 days after GET. Based on plasmid copy number and expression results, together with blood analysis, we showed that IL-12 GET is safe in a porcine animal model. Furthermore, we demonstrated that pigs are a valuable model for human gene therapy safety studies.


Gene Transfer Techniques , Interleukin-12 , Humans , Animals , Mice , Swine , Interleukin-12/genetics , Interleukin-12/metabolism , Transfection , Genetic Therapy/methods , DNA/metabolism , Plasmids/genetics , Vaccination , Electroporation/methods
13.
J Microbiol Methods ; 220: 106912, 2024 May.
Article En | MEDLINE | ID: mdl-38452904

Electroporation is a vital process that facilitates the use of modern recombineering and other high-throughput techniques in a wide array of microorganisms, including non-model bacteria like plant growth-promoting bacteria (PGPB). These microorganisms play a significant role in plant health by colonizing plants and promoting growth through nutrient exchange and hormonal regulation. In this study, we introduce a sequential Design of Experiments (DOE) approach to obtain highly competent cells swiftly and reliably for electroporation. Our method focuses on optimizing the three stages of the electroporation procedure-preparing competent cells, applying the electric pulse field, and recovering transformed cells-separately. We utilized a split-plot fractional design with five factors and a covariate to optimize the first step, response surface methodology (RSM) for the second step, and Plackett-Burman design for two categorical factors and one continuous factor for the final step. Following the experimental sequence with three bacterial models, we achieved efficiencies 10 to 100 times higher, reaching orders of 105 to 106 CFU/µg of circular plasmid DNA. These results highlight the significant potential for enhancing electroporation protocols for non-model bacteria.


DNA , Transformation, Bacterial , Plasmids , Electroporation/methods , Plants , Bacteria/genetics
14.
STAR Protoc ; 5(1): 102940, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38460133

The use of CRISPR-Cas9 ribonucleoproteins has revolutionized manipulation of genomes. Here, we present a protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. First, we describe steps for production and preparation of presumptive zygotes for electroporation. The first electroporation introduces ribonucleoproteins formed by Cas9D10A with two guide RNAs to target DNA, and the second introduces the same ribonucleoprotein complex to target DNA plus Cas13a with one guide RNA to target RNAs. For complete details on the use and execution of this protocol, please refer to Nix et al.1.


CRISPR-Cas Systems , Zygote , Cattle , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems , RNA/genetics , Electroporation/methods , DNA/genetics , Ribonucleoproteins/genetics
15.
Cancer Med ; 13(5): e7035, 2024 Mar.
Article En | MEDLINE | ID: mdl-38491833

BACKGROUND: Malignant liver tumors seriously endanger human health. Among different therapeutic approaches, high-frequency irreversible electroporation (H-FIRE) is a recently emerging tumor ablation technique. The objective of this study was to evaluate the feasibility and safety of ultrasound-guided percutaneous H-FIRE using four electrode needles in porcine livers. METHODS: Twelve experimental pigs underwent percutaneous H-FIRE ablation using a compound steep-pulse therapeutic device. Liver tissues adjacent to the gallbladder, blood vessels, and bile ducts were selected as the ablation targets. Pigs were randomly divided into three groups: (1) immediately after ablation (N = 4), (2) 2 days after ablation (N = 4), and (3) 7 days after ablation (N = 4). Blood routine, liver and kidney function, and myocardial enzyme levels were measured before and after ablation. Ultrasound, contrast-enhanced ultrasound (CEUS), contrast-enhanced magnetic resonance imaging (MRI), and hematoxylin-eosin staining were performed to evaluate the ablation performance. RESULTS: Ultrasound-guided percutaneous H-FIRE ablations using four electrode needles were successfully performed in all 12 experimental pigs. The general conditions of the pigs, including postoperative activities and feeding behaviors, were normal, with no significant changes compared with the preoperative conditions. The imaging features of ultrasound, CEUS, and MRI demonstrated no significant changes in the gallbladder walls, bile ducts, or blood vessels close to the ablation areas. Laboratory tests showed that liver function indices and myocardial enzymes increased temporarily after H-FIRE ablation, but decreased to normal levels at 7 days after ablation. Histopathological examinations of porcine liver specimens showed that this technique could effectively ablate the target areas without damaging the surrounding or internal vascular systems and gallbladder. CONCLUSIONS: This study demonstrated the feasibility and safety of ultrasound-guided percutaneous H-FIRE ablation in porcine livers in vivo, and proposed a four-needle method to optimize its clinical application.


Liver , Ultrasonography, Interventional , Animals , Electrodes , Electroporation/methods , Feasibility Studies , Liver/diagnostic imaging , Liver/surgery , Swine
16.
Biomed Phys Eng Express ; 10(3)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38479001

We present a numerical method for studying reversible electroporation on normal and cancerous cervical cells. This microdosimetry analysis builds on a unique approach for extracting contours of free and overlapping cervical cells in the cluster from the Extended Depth of Field (EDF) images. The algorithm used for extracting the contours is a joint optimization of multiple-level set function along with the Gaussian mixture model and Maximally Stable Extremal Regions. These contours are then exported to a multi-physics domain solver, where a variable frequency pulsed electric field is applied. The trans-Membrane voltage (TMV) developed across the cell membrane is computed using the Maxwell equation coupled with a statistical approach, employing the asymptotic Smoluchowski equation. The numerical model was validated by successful replication of existing experimental configurations that employed low-frequency uni-polar pulses on the overlapping cells to obtain reversible electroporation, wherein, several overlapping clumps of cervical cells were targeted. For high-frequency calculation, a combination of normal and cancerous cells is introduced to the computational domain. The cells are assumed to be dispersive and the Debye dispersion equation is used for further calculations. We also present the resulting strength-duration relationship for achieving the threshold value of electroporation between the normal and cancerous cervical cells due to their size and conductivity differences. The dye uptake modulation during the high-frequency electric field electroporation is further advocated by a mathematical model.


Electricity , Models, Theoretical , Cell Membrane/metabolism , Electric Conductivity , Electroporation/methods
17.
J Neurosci Methods ; 406: 110126, 2024 Jun.
Article En | MEDLINE | ID: mdl-38554786

BACKGROUND: Electroporation is an effective technique for genetic manipulation of cells, both in vitro and in vivo. In utero electroporation (IUE) is a special case, which represents a fine application of this technique to genetically modify specific tissues of embryos during prenatal development. Commercially available electroporators are expensive and not fully customizable. We have designed and produced an inexpensive, open-design, and customizable electroporator optimized for safe IUE. We introduce NeuroPorator. METHOD: We used off-the-shelf electrical parts, a single-board microcontroller, and a cheap data logger to build an open-design electroporator. We included a safety circuit to limit the applied electrical current to protect the embryos. We added full documentation, design files, and assembly instructions. RESULT: NeuroPorator output is on par with commercially available devices. Furthermore, the adjustable current limiter protects both the embryos and the uterus from overcurrent damage. A built-in data acquisition module provides real-time visualization and recordings of the actual voltage/current pulses applied to each embryo. Function of NeuroPorator has been demonstrated by inducing focal cortical dysplasia in mice. SIGNIFICANCE AND CONCLUSION: The simple and fully open design enables quick and cheap construction of the device and facilitates further customization. The features of NeuroPorator can accelerate the IUE technique implementation in any laboratory and speed up its learning curve.


Electroporation , Gene Transfer Techniques , Animals , Electroporation/methods , Electroporation/instrumentation , Female , Mice , Gene Transfer Techniques/instrumentation , Pregnancy , Equipment Design , Uterus , Embryo, Mammalian
18.
Lab Chip ; 24(7): 1957-1964, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38353261

Electroporation (in which the permeability of a cell membrane is increased transiently by exposure to an appropriate electric field) has exhibited great potential of becoming an alternative to adeno-associated virus (AAV)-based retina gene delivery. Electroporation eliminates the safety concerns of employing exogenous viruses and exceeds the limit of AAV cargo size. Unfortunately, several concerns (e.g., relatively high electroporation voltage, poor surgical operability and a lack of spatial selectivity of retina tissue) have prevented electroporation from being approved for clinical application (or even clinical trials). In this study, a flexible micro-electrode array for retina electroporation (FERE) was developed for retina electroporation. A suitably shaped flexible substrate and well-placed micro-electrodes were designed to adapt to the retina curvature and generate an evenly distributed electric field on the retina with a significantly reduced electroporation voltage of 5 V. The FERE provided (for the first time) a capability of controlled gene delivery to the different structural layers of retina tissue by precise control of the distribution of the electrical field. After ensuring the surgical operability of the FERE on rabbit eyeballs, the FERE was verified to be capable of transfecting different layers of retina tissue with satisfactory efficiency and minimum damage. Our method bridges the technical gap between laboratory validation and clinical use of retina electroporation.


Electroporation , Retina , Animals , Rabbits , Electroporation/methods , Electrodes , Gene Transfer Techniques , Transfection
19.
Bioelectrochemistry ; 157: 108670, 2024 Jun.
Article En | MEDLINE | ID: mdl-38364517

The understanding of the mechanisms involved in DNA electrotransfer in human skin remains modest and limits the clinical development of various biomedical applications, such as DNA vaccination. To elucidate some mechanisms of DNA transfer in the skin following electroporation, we created a model of the dermis using a tissue engineering approach. This model allowed us to study the electrotransfection of fibroblasts in a three-dimensional environment that included multiple layers of fibroblasts as well as the self-secreted collagen matrix. With the aim of improving transfection yield, we applied electrical pulses with electric field lines perpendicular to the reconstructed model tissue. Our results indicate that the fibroblasts of the reconstructed skin tissue can be efficiently permeabilized by applied millisecond electrical pulses. However, despite efficient permeabilization, the transfected cells remain localized only on the surface of the microtissue, to which the plasmid was deposited. Second harmonic generation microscopy revealed the extensive extracellular collagen matrix around the fibroblasts, which might have affected the mobility of the plasmid into deeper layers of the skin tissue model. Our results show that the used skin tissue model reproduces the structural barriers that might be responsible for the limited gene electrotransfer in the skin.


DNA , Electroporation , Humans , Transfection , Electroporation/methods , DNA/genetics , Plasmids/genetics , Collagen/genetics , Fibroblasts
20.
Theriogenology ; 218: 111-118, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38320372

Genetically modified pigs play a critical role in mimicking human diseases, xenotransplantation, and the development of pigs resistant to viral diseases. The use of programmable endonucleases, including the CRISPR/Cas9 system, has revolutionized the generation of genetically modified pigs. This study evaluates the efficiency of electroporation of oocytes prior to fertilization in generating edited gene embryos for different models. For single gene editing, phospholipase C zeta (PLC ζ) and fused in sarcoma (FUS) genes were used, and the concentration of sgRNA and Cas9 complexes was optimized. The results showed that increasing the concentration resulted in higher mutation rates without affecting the blastocyst rate. Electroporation produced double knockouts for the TPC1/TPC2 genes with high efficiency (79 %). In addition, resistance to viral diseases such as PRRS and swine influenza was achieved by electroporation, allowing the generation of double knockout embryo pigs (63 %). The study also demonstrated the potential for multiple gene editing in a single step using electroporation, which is relevant for xenotransplantation. The technique resulted in the simultaneous mutation of 5 genes (GGTA1, B4GALNT2, pseudo B4GALNT2, CMAH and GHR). Overall, electroporation proved to be an efficient and versatile method to generate genetically modified embryonic pigs, offering significant advances in biomedical and agricultural research, xenotransplantation, and disease resistance. Electroporation led to the processing of numerous oocytes in a single session using less expensive equipment. We confirmed the generation of gene-edited porcine embryos for single, double, or quintuple genes simultaneously without altering embryo development to the blastocyst stage. The results provide valuable insights into the optimization of gene editing protocols for different models, opening new avenues for research and applications in this field.


Swine Diseases , Virus Diseases , Humans , Animals , Swine/genetics , Animals, Genetically Modified , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Gene Editing/veterinary , Gene Editing/methods , Fertilization in Vitro/veterinary , Oocytes , Electroporation/veterinary , Electroporation/methods , Virus Diseases/veterinary , Swine Diseases/genetics
...